Fabrication of dye sensitized solar cells with a double layer photoanode

Authors

  • M. Marandi Physics department, Faculty of Science, Arak University, Arak 38156, Iran
  • M. Pirhadi Chemical Engineering department, Faculty of Engineering, Arak University, Arak 38156, Iran
  • R. Davarnejad Chemical Engineering department, Faculty of Engineering, Arak University, Arak 38156, Iran
  • S. Feshki Physics department, Faculty of Science, Arak University, Arak 38156, Iran
Abstract:

Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles  were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition  method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP as precursor. Then these template scarified and the hollow structures found. Since the HSs paste was prepared as same method of prepared TiO2 nano particles and this paste was deposited on last layer by Dr. Blade method. The prepared photoanodes was soaped in N-719 dye after sintering in 500 ÚC. The dye sensitized solar cells  were fabricated with the finalized double layer photoanodes. The best photovoltaic characteristics of the optimized cell were 734 mV, 13.16 mA/cm2, 62% and 5.96% for Voc, Jsc, F.F. and efficiency respectively.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

fabrication of dye sensitized solar cells with a double layer photoanode

dye sensitized solar cell was fabricated from a double layer photoanode. first, tio2 nanoparticles  were synthesized by hydrothermal method. these tio2 nps were deposited on fto glasses by electrophoretic deposition  method in applied voltage of 5 v and epd time of 2.5-10 min. then tio2 hollow spheres (hss) were synthesized by sacrificed template method with carbon spheres as template and ttip ...

full text

Influence of TiO2 layer thickness as photoanode in Dye Sensitized Solar Cells

Dye-sensitized solar cells (DSSCs) are categorized as some of inexpensive thin-film solar cells. The basis and foundation of these cells is a semiconductor that consists of an electrolyte and a light-sensitive anode. Titanium dioxide (TiO2) is a semiconductor that plays the role of anode and is the main constituent of these cells. In this paper, we have addressed the functionality and performan...

full text

High-efficiency dye-sensitized solar cell with three-dimensional photoanode.

Herein, we present a straightforward bottom-up synthesis of a high electron mobility and highly light scattering macroporous photoanode for dye-sensitized solar cells. The dense three-dimensional Al/ZnO, SnO(2), or TiO(2) host integrates a conformal passivation thin film to reduce recombination and a large surface-area mesoporous anatase guest for high dye loading. This novel photoanode is desi...

full text

Dual-functional ZnO nanorod aggregates as scattering layer in the photoanode for dye-sensitized solar cells.

A bilayered ZnO photoanode was constructed for dye-sensitized solar cells with a high conversion efficiency of 4.0%. One layer made of ZnO nanocrystallites increases dye adsorption, and the other consisting of ZnO nanorod aggregates provides a directed electron pathway for the electron transport together with a prominent aggregation-induced light scattering.

full text

Ultra-High Speed Fabrication of TiO2 Photoanode by Flash Light for Dye-Sensitized Solar Cell.

In this work, a new way to fabricate nanoporous TiO2 photoanode by flash light is demonstrated. TiO2 nanoparticles are sintered on FTO glass by flash light irradiation at room temperature in ambient condition, which is dramatically simple, ultrahigh speed and one-shot large area fabrication process compared to a conventional high temperature (120 °C) thermal sintering process. The effect of the...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  32- 37

publication date 2016-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023